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Abstract
Global, heat flux-driven ITG gyrokinetic simulations which manifest the formation of macroscopic, mean toroidal
flow profiles with peak thermal Mach number 0.05, are reported. Both a particle-in-cell (XGC1p) and a semi-
Lagrangian (GYSELA) approach are utilized without a priori assumptions of scale separation between turbulence and
mean fields. Flux-driven ITG simulations with different edge flow boundary conditions show in both approaches
the development of net unidirectional intrinsic rotation in the co-current direction. Intrinsic torque is shown to scale
approximately linearly with the inverse scale length of the ion temperature gradient. External momentum input is
shown to effectively cancel the intrinsic rotation profile, thus confirming the existence of a local residual stress and
intrinsic torque. Fluctuation intensity, intrinsic torque and mean flow are demonstrated to develop inwards from
the boundary. The measured correlations between residual stress and two fluctuation spectrum symmetry breakers,
namely E × B shear and intensity gradient, are similar. Avalanches of (positive) heat flux, which propagate either
outwards or inwards, are correlated with avalanches of (negative) parallel momentum flux, so that outward transport
of heat and inward transport of parallel momentum are correlated and mediated by avalanches. The probability
distribution functions of the outward heat flux and the inward momentum flux show strong structural similarity.

(Some figures may appear in colour only in the online journal)

1. Introduction

Toroidal rotation of tokamak plasma is central to performance,
since rotation stabilizes resistive wall modes and affect the
L–H transition threshold, and may enhance confinement. In
present day tokamaks, rotation is driven mainly by neutral
beams, but beam drive is less effective in future devices,
such as ITER. On the other hand, self-acceleration provides
an intrinsic rotation—a spontaneous rotation without external
momentum input [1]. Hence, understanding this phenomena
is important for successful performance of future tokamak
devices and tokamak reactors. Intrinsic rotation is produced
by a component of the toroidal momentum flux not directly
proportional to the toroidal velocity or its shear acting in
concert with the boundary conditions. This non-Fickian flux
is produced by a residual stress, driven by turbulence and ∇Ti,
∇Pi, ∇Te, ∇n, etc.

The momentum flux driven by electrostatic turbulence
is given by the Reynolds stress, so the radial component of
Reynolds stress (i.e. radial flux) per unit mass per unit density
of toroidal momentum can be decomposed as [2, 3]

�r,φ = −χφ

∂〈vφ〉
∂r

+ V 〈vφ〉 + �R
r,φ,

where χφ is the turbulent momentum diffusion coefficient, V is
the convective velocity, and �R

r,φ is the residual stress per unit
mass per unit density. In this paper, the stress per unit mass
per density is called ‘stress’ for simplicity. Self-acceleration
of a plasma from rest requires a non-zero residual stress
�R

r,φ �= 0 on the boundary. More generally, considerations
of momentum balance dictate that

∂〈vφ〉
∂r

∣∣∣
bndry

= {[
�R

r,φ + V 〈vφ〉] /χφ

}
bndry

,
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i.e. the stationary toroidal intrinsic velocity gradient at the
boundary is set by �R

r,φ and V 〈vφ〉 at the boundary. For

a no-slip boundary condition then, �R
r,φ

∣∣∣
bndry

determines

the rotation. This identifies the importance both of flow
boundary conditions and of edge gradient effects on the
rotation dynamics.

Note that the Reynolds stress equals the residual stress
when the toroidal flow 〈vφ〉 and its gradient are zero. In order
to explain the origins of intrinsic rotation, an intrinsic torque
density—related to ∇ ·�r,φ—has been proposed and linked to
the asymmetry in the heat flux driven ambient turbulence. The
most compelling experimental demonstration of the viability of
the intrinsic torque concept are the cancellation experiments
of Solomon et al [4] and Ida et al [5], in which momentum
input opposite to the intrinsic rotation drastically reduces on-
axis flow speeds and effectively cancels the intrinsic rotation
profile. Indeed, a stationary plasma with nearly flat rotation
profile results, in spite of applied torque! In this study, we
perform related numerical simulations and so demonstrate the
existence of a flux-driven residual stress. The results are used
to elucidate the dynamics of residual stress and the intrinsic
rotation.

A useful physical analogy which helps our understanding
of intrinsic rotation is that of a heat engine [6, 7]. Loosely
speaking, a heat engine converts some fraction of the free
energy stored in a temperature differential or gradient to
mechanical work. Similarly, there are many indications that
the process of intrinsic rotation generation converts some
fraction of the stored free energy implicit in a sustained
temperature gradient ∇T to toroidal velocity. The temperature
difference is converted to ordered kinetic energy of the flow.
The microphysics of the residual stress is linked to turbulence
spectral asymmetry. Of course, the local temperature gradient
is in turn maintained by the local heat flux Q, so the latter
emerges as the ultimate driver of the intrinsic rotation. In this
regard, we note that while many simulations have addressed
aspects of intrinsic rotation physics, none has as yet reported
an unambiguously finite, unidirectional net toroidal rotation in
flux-driven turbulence. In this paper, we explicitly demonstrate
the viability of this scenario. Moreover, the heat engine
analogy suggests that:

(i) the formation of intrinsic rotation profiles is closely related
to the formation of temperature profiles, since ∇〈T 〉 is
seen as the fuel for the ‘engine’ which drives 〈vφ(r)〉.
Thus, it is natural that intrinsic rotation drive is observed
to be spatially correlated or co-located with regions of
enhanced confinement, transport barriers, etc.

(ii) the synergy of thermal and flow or momentum boundary
conditions is important to the development of this work.
We demonstrate that the spatial proximity of an edge
cooling layer (which supports a steepened ∇T , maintained
by Q) and the no-slip boundary (which absorbs the stress
transmitted to the boundary by the turbulent momentum
flux) is crucial to the development of intrinsic rotation.

Nearly all previous simulation studies of intrinsic rotation
physics focused entirely on the radial flux of toroidal
momentum, and did not address actual rotation profile
structure, the dynamics of intrinsic rotation build-up, and
its evolution in the presence of heat flux-driven turbulence.

Previous simulation study by Idomura using flux-driven
gyrokinetic simulations presented global rotation profile,
which shows dipole shape of rotation profile with co-current
direction around magnetic axis and counter-current direction
around edge with turbulence damping layers where flow is
damping near boundaries [8].

Here, we present global, heat flux-driven gyrokinetic
simulations which manifest the formation of macroscopic,
unidirectional mean toroidal flow profiles which tend to be
inwardly peaked with maximum thermal Mach number MT =
〈vφ〉/vth ∼ 0.05 and which carry a net momentum (i.e.
when radially integrated). The remainder of this paper is
organized as follows. In section 2, the detailed simulation
approach is described and toroidal momentum conservation
of the gyrokinetic formalism is discussed. In section 3,
the intrinsic rotation and the residual stress obtained from
simulations are analysed. In section 4, the analysis of the
spatio-temporal structure of the residual structure is presented.
Section 5 presents discussion and conclusions.

2. Simulation approach and momentum
conservation

In this study, the gyrokinetic turbulence codes XGC1p (a
concentric circular magnetic geometry version of XGC1 [9])
and GYSELA [10] have been used. Both codes solve the 5D
gyrokinetic Vlasov equation derived from the electrostatic
Lagrangian in gyro-centre variables [11, 12],

∂f

∂t
+ Ẋ · ∂f

∂X
+ v̇‖ · ∂f

∂v‖
= 0,

Ẋ = (1/D)[v‖b̂ + (mcv2
‖/qB2)∇ × b̂

+ {B × c(µ∇B − qE)}/qB2], (1)

v̇‖ = − (1/mD)(b̂ + (mcv‖/qB)∇ × b̂) · (µ∇B − qE),

D = 1 + (mcv‖/qB) b̂ · (∇ × b̂).

Here f is the distribution function, X is the gyrocentre position
in real space, v‖ is the velocity of the gyrocentre parallel to
the local magnetic field B, b̂ = B/B, µ = mv2

⊥/2B is the
magnetic moment, E is the gyro-averaged electric field, m is
mass, and q is charge.

In the above conservative gyrokinetic formalism, the
global gyrokinetic toroidal canonical angular momentum,

P G.C.
φ ≡

∫ (
q

c
ψ + mRv||

Bφ

B

)
f J dv|| dµ d3X (2)

is conserved when the system is axisymmetric [13, 14], where
superscript G.C. represents gyrocentre variable. Here ψ is the
poloidal flux, Bφ is the toroidal component of magnetic field,
R is the major radius of the gyrocentre and J is the Jacobian
for the transformation from usual to gyrocentre phase space
variables. However, the robustness of angular momentum
conservation in gyrokinetic simulations has been questioned
[15, 16]. Here, we demonstrate that simulation results obtained
with XGC1p are not affected significantly by the error induced
by non-conservation of angular momentum. The successful
conservation of toroidal momentum in GYSELA has already
been exhaustively addressed in [14]. The angular momentum
of the gyrocentres and the angular momentum of the particles
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Table 1. Variations of toroidal angular momentum in Vlasov phase space and gyrokinetic phase space. Superscripts V and G.C. indicate
Vlasov and gyrocentre variables respectively. v⊥ represents perpendicular velocity including diamagnetic flow. Conservation of canonical
angular momentum in the gyrokinetic formalism gives a small higher order toroidal momentum in real space due to profile changes. We
assume the charge number of ion to be one for simplicity. q = e for ion and q = −e for electron.

6D Vlasov space 5D gyrokinetic space

Conserved quantity P V
φ ≡ q

c
nVψ + LV

φ , P G.C.
φ ≡ q

c
nG.C.ψ + LG.C.

φ ,
(canonical angular momentum) where LV

φ = 〈nVmRvφ〉 where LG.C.
φ = 〈nG.C.mRv||Bφ/B〉

Cancellation of q

c
nψ Yes, by quasi-neutrality. No, by polarization density.

of ions and electrons nV
i = ne nG.C.

i = ne − ∇ · (ρ2
i /4πλ2

De)Er

Conservation of 	Lφ = 	LV
φ = 0 	Lφ = 	LG.C.

φ + 	〈nmRv⊥Bp/B〉
toroidal angular momentum = −	

(
e

c
npψ

)
+ 	〈nmRv⊥Bp/B〉

are different. Since the toroidal angular momentum of the
particles is one of the conserved quantities, the time variation
of the difference between the two momenta is an indication of
errors in the momentum calculation in gyrokinetic simulation.
These turn out to be negligible in the XGC1p simulations
performed for this study, as shown below.

There can be two origins of the difference between the
two toroidal momenta. One originates from the difference
between gyrocentre of the gyrokinetic formalism and real
particle position (the first term of equation (2)). The other is
from the difference between v||RBφ/B and the actual toroidal
velocity (i.e. the second term of equation (2)). Table 1 is a
summary of those differences. In primitive Vlasov plasma
and 5D gyrokinetic plasma, the canonical angular momenta,
P V

φ and P G.C.
φ are conserved, respectively, where superscript

V represents 6D Vlasov plasma. In Vlasov plasma, the ion
density is tightly bound to electron density by quasineutrality.
Then,

∫
(q/c)ψf d3v for ions and electrons cancel. Since the

collisional exchange of momentum between electrons and ions
is negligible, conservation of canonical angular momentum of
ions implies conservation of angular momentum of ions. In
contrast, the gyro-averaged gyrocentre density of ions, nG.C.

i
can be different from electron density due to the polarization
density, np = nG.C

i − ne [17, 18]. In this case, P G.C.
φ is still

conserved, as the change in kinetic angular momentum is
compensated by the canonical momentum change from the
polarization density, e	npψ/c, where np 	 ∇ · (ρ2

i /4πλ2
D)Er

from gyrokinetic Poisson equation, ρi is the gyroradius and λD

is the Debye length. Note that 	np = 	nG.C.
i when electron

density is constant. Here, we take the charge number of ion to
be 1 for simplicity.

In addition to numerically induced non-conservation of
LG.C.

φ , which is evaluated from the second term of equation (2),
the difference between the two angular momenta can produce
a higher order toroidal flow. Since LG.C.

φ is only from
parallel momentum, the toroidal component of perpendicular
momentum should be considered to calculate the true toroidal
momentum. Hence, the change in real toroidal momentum is
the change in LG.C.

φ plus the change in the toroidal component
of perpendicular momentum.

Note that all these aforementioned differences of angular
momentum are higher order quantities in the conventional
gyrokinetic formalism, and directly related to changes in the
profiles. For example, consider a typical hydrogen plasma in a
tokamak with BT = 2 T, R0 = 2 m, Bp/BT = 0.1, R/LT = 6
and Ti = 2 keV, where BT and Bp are toroidal and poloidal
magnetic field, R0 is major radius, Ti is ion temperature and
LT is temperature gradient scale length. The higher order

toroidal momentum from the polarization charge density can
be estimated as follows. Considering sinusoidal shape of the
radial variation of guiding centre density with wavenumber
k and amplitude δnp, the spurious canonical momentum is
about (e/c)δnp(dψ/dr)(π/k). From the gyrokinetic Poisson
equation, the amplitude (δnp) and E × B speed (vE) are
related with δnp/n0 = (mc)/(eB)kvE ∼ k2

⊥ρ2eφ/T , where
n0 is unperturbed density. Hence, the spurious canonical
momentum per particle becomes πmRvEBp/B, after using
dψ/dr = RBp. The higher order flow is thus πvEBp/B,
approximately. Except in a steep gradient like the edge
pedestal, E × B drift velocity is smaller than a few per cent
of the thermal velocity. Using the above plasma parameters
and assuming neoclassical radial E-field approximately E =
T/eLT , the E × B drift velocity is about 0.7% of thermal ion
velocity. The πBp/B factor reduces the higher order flow even
further to 0.2% of thermal velocity. This estimation is based
on vE , assuming zero initial E-field. If the initial E-field is not
zero, a factor of 	vE/vE should be included and that would
make the higher order flow become even smaller.

The higher order flow coming from neglecting of
the toroidal component of the perpendicular flow can be
decomposed into two major sources of perpendicular flows:
E × B drift and diamagnetic flow. An estimation gives
R0Bp	(Er − (dP/dr)/n)/B2 for the change in toroidal
component of E × B flow and diamagnetic flow. Using
the above tokamak parameters, the parallel component of
diamagnetic flow due to temperature gradient is 300 m s−1,
which is 6×10−4 of thermal ion (hydrogen) velocity. Since the
variation of diamagnetic flow due to profile change is smaller,
the spurious change in toroidal momentum from neglecting
diamagnetic flow is insignificant when compared with the
effects of momentum transport. From the neoclassical radial
force balance equation, E × B drift from radial E-field is the
same order of magnitude as diamagnetic flow, and the direction
of E ×B tends to cancel the diamagnetic flow. This makes the
higher order flow from perpendicular flow even smaller than
the estimated value, 6 × 10−4vth.

Considering conventional tokamak parameters for core
plasmas, the higher order flow generation is much smaller than
the turbulence momentum transport. However, during the edge
pedestal formation, the change in E×B drift velocity becomes
a fraction of thermal velocity, and a possible higher order flow
needs to be considered with care. For simulations exhibiting
sharp and large profile changes, corrections to the angular
momentum are required to calculate the toroidal momentum
accurately. A numerical method that conserves the real toroidal
momentum using multi-scale correction will be presented in

3
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Table 2. Table comparing the imposed boundary condition and consequence for the thermal and momentum channel.

Channel Boundary condition (outer) How enforced Consequence

Ion temperature Edge cooling applied r > 0.78a Particle velocity is rescaled Formation of steepened
with momentum conservation to ∇Ti/Ti for r > 0.7a
reduce the temperature according to a
give cooling power.

Toroidal velocity No slip (i.e. vφ = 0) Strong friction with exponential 〈vφ〉 → 0 at the boundary layer.
applied r > 0.87a decay of momentum. Decay Net toroidal spin-up driven

constant is 40/�i by ∇T via transmission
of stress to boundary by
turbulent transport.

the near future. In the XGC1p simulations presented in this
paper, we always considered a near steady-state plasma, so
that the momentum difference due to the change in gyrocentre
density and temperature are less than 0.02% of ion thermal
velocity. These are negligible as compared with the peak
intrinsic parallel flow generated in the simulations.

Unlike conventional delta-f gyrokinetic codes, which
calculate only turbulence perturbation with assumed scale
separation between turbulence and mean profiles (ignoring
∇B-drift in the weight evolution equation from equation (1)),
both XGC1p and GYSELA evolve the turbulence and mean fields
self-consistently by keeping all of the time evolution of f .

The numerical approach of XGC1p is the particle-in-cell
method. A no-slip boundary condition is used to constrain
the flow at the outer boundary assuming that the rotation of
edge is small due to edge effects. XGC1p enforces a no-slip
boundary condition by applying a very high friction to the
parallel flow near the outer boundary. To implement the high
friction force, XGC1p calculates flux-averaged parallel flow
of small layers near outer boundary and periodically shifts the
particle distribution towards zero flow. The period is about
100/�i, where �i is gyrofrequency of ion. The period is
much smaller than the momentum transport time scale and
much larger than simulation time step, which enables efficient
simulation. Table 2 shows the boundary condition of XGC1p.

GYSELA uses the semi-Lagrangian numerical scheme
and solves the full distribution function, implying no scale
separation between equilibrium and perturbations. As in the
case of XGC1p, a no-slip boundary condition is imposed
at the outer boundary. At the inner boundary, a vanishing
gradient is imposed and the toroidal flow is not constrained.
An ad hoc diffusion, non-vanishing in small regions near the
radial boundaries of the domain, is included in the gyrokinetic
equation. This term provides an efficient coupling to the
thermal bath and no-slip condition at the edge.

It is important to note that this implementation of the
no-slip boundary condition does not damp the turbulent
fluctuations near the boundary and so allows the transmission
of stress into the boundary layer by turbulent transport. This
interaction between the plasma and the boundary through
turbulence is crucial to achieving global spontaneous spin-
up of tokamak plasma without external torque input. From
a more general point of view, it is obvious that any conserved
quantity such as the toroidal momentum can reach non-
vanishing volume averaged values if and only if the system
is open, i.e. if it exchanges information with the exterior via
the boundary conditions. Hence, if transmission of stress to the
boundary (by turbulence in XGC1p) is inhibited, net radially
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Figure 1. Density and temperature profile used in XGC1p. The
temperature profile is when near steady state is obtained. Locations
where heating and cooling are applied are shown.

integrated rotation is impossible. In that case, oppositely
directed toroidal counter flows, with no net momentum, will
result. This observation underscores the sensitivity of intrinsic
rotation to the boundary conditions on all of flow, heat and
fluctuations. Note that, in GYSELA, the dissipative buffer
regions ensure exchange of information, including momentum,
with the exterior. In this case, such an exchange is mostly
controlled by the ad hoc dissipation, with a minor contribution
from fluctuations which tend to be damped in these boundary
regions.

In this study, the turbulence is flux-driven, and the
dynamics responds to heat sources and sinks in the plasma.
The regions where the source(sink) are applied are localized
near the inner(outer) boundary, so as not to interfere with
the turbulence in the middle (figure 1). In XGC1p, the
heating (source) and cooling (sink) conserve momentum. The
perpendicular velocity (v⊥) and parallel velocity (v||) of each
particle are multiplied by a factor of α and parallel velocity is
adjusted by β periodically, (vnew

⊥ = αvold
⊥ , vnew

|| = αvold
|| + β).

α and β are determined to conserve energy and momentum,
considering the external heating power and the external torque.
The upshot of the edge cooling is to allow the formation of a
steep edge temperature gradient close to the plasma boundary.
In GYSELA also, the heating occurs near the inner boundary.
The heat sink however is differently modelled: no cooling is
applied and the diffusive term near the outer boundary acts as
the energy sink. The source term in GYSELA is a versatile source
which can allow for separate injections of heat, momentum
and vorticity [19]. As a result of this constraint, this source
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Figure 2. Density and temperature profile used in GYSELA. The
temperature and density are nomalized. ρ∗ = 1/512 and ν∗ = 0.1.

term can be chosen to be either isotropic or anisotropic in
velocity space. For the simulations presented here, only a
momentum-conserving heat injection is included. Details of
other parameters are given in [19].

The safety factor q(r), the density, and the temperature
profiles used in XGC1p are adopted from the DIII-D
experiments (H-mode plasma with NBI heating) described
in [4]. Since the temperature profile in full-f simulation
is evolving self-consistently, the detailed structure of the
temperature profile when we set zero initial flow is different
from the experimental data. The temperature profile is from a
(near) steady state with 1 MW heating and cooling. The density
and temperature profile of XGC1p are shown in figure 1. The
density and temperature profile used in GYSELA are typical
L-mode like plasmas. The profiles are shown in figure 2.
The ρ∗ is 1/298 for XGC1 and 1/512 for GYSELA, where ρi

is the characteristic ion gyroradius and ρ∗ is ρi over minor
radius. The grid sizes (radial, poloidal, toroidal) of XGC1p
simulation are (150, 300, 64) and those of GYSELA are (1024,
1024, 128). The poloidal grid size of XGC1p is an averaged
value, since the poloidal grid number is varying in radius. In
both codes, only the ion distribution functions are calculated
and electrons are assumed to respond adiabatically to the
electric potential on a flux surface. Coulomb collisions are
not included in the XGC1p simulations to study the effect of
pure turbulence, while a Fokker–Planck operator acting on v‖
is included in GYSELA [20]. The collisionality ν∗ = 0.1 and the
total simulation time is roughly 0.3 collision time for GYSELA

simulation. Therefore collisional effects are not expected to
dominate the processes considered in the article.

Both codes compute the time evolution of the temperature
profile given the source (sink) profiles. The stationary state
can be obtained with long simulations for a much larger time
scale than the transport time scale. However, due to limitations
on available computational resources, we stop the simulations
near a stationary state for temperature and turbulence intensity.
We emphasize, however, that in this state, the rotation profile
is not yet stationary and the intrinsic flow is still developing.

The temperature profile still varies up to a few per cent
during the simulation in the radial region 0.3 < r/a <

0.8. The simulation results from XGC1p in the cancellation
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Figure 3. (a) Parallel flow develops in XGC1p without torque at
t = 0, 1, 3.5 and 7.2 ms. (0, 170, 580 and 1200 R0/vth) Black solid
line shows parallel flow with external torque. MT 	 0.05 is
achieved at 7 ms, and the external torque suppresses it to MT < 0.01
globally. (b) Radial electric field profile at the corresponding time.

experiment figures 3 and 5 are obtained using the following
procedure. (i) Achieve a near steady temperature profile for a
given heating and cooling profile. (ii) Suppress the parallel
flow so that the plasma is nearly at rest. (iii) Restart the
simulation (t = 0 at graphs) with negligible initial flow and
observe turbulence induced momentum transport with/without
external torque. The results shown in this work are from
stage (iii) of the procedure. A similar cancellation experiment
in GYSELA is not shown here and a more classical setup is
shown: the turbulence is initialized in the central region
0.35 < r/a < 0.65 of the box, spreads throughout the box
and adjusts to the source (sink) conditions. Whilst doing so an
initially vanishing parallel flow builds up where the turbulence
is initially strong and spreads radially.

In the simulations presented here, parallel flow and
toroidal flow are very close to each other, so the terms are
interchanged without distinction. The XGC1p simulation
has been performed on the Cray-XT5 machine of National
Centre for Computational Sciences and Cray-XE6 machine of
National Energy Research Scientific Computing Centre. The
GYSELA computations were performed at the Centre de Calcul
Recherche et Technologie.

3. Intrinsic rotation and intrinsic torque

Figures 3(a) and 4 show the evolution of intrinsic rotation
in ITG simulations using respectively XGC1p and GYSELA
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Figure 4. Parallel flow develops in GYSELA without torque at t = 0,
24.4, 48.8, 73.2 and 97.7 R0/vth. 110 R0/vth is corresponding
to 1 ms.

without an external torque. For XGC1p, the magnetic
geometry is approximated by a concentric circular torus with
1.93 T magnetic field on axis, 1.7 m major radius, and 0.6 m
minor radius. ρ∗ is about 1/298. 1 MW heating (cooling) is
applied near the magnetic axis (the last closed flux surface)
to the ion species in the regions of 0.17 < r/a < 0.3
(0.78 < r/a < 0.92), respectively. An external torque is then
applied to cancel the rotation in the region of 0.4 < r/a <

0.8. The simulation started from zero initial flow and a near
steady-state temperature profile. The electrostatic potential
�out at the outer boundary is held fixed (to zero in the case
shown). A mean parallel flow is generated and achieves a
peak Mach number MT 	 0.05, in the co-current direction
after 7 ms (	1200R0/vth, red solid line). A saturated parallel
flow is not achieved during 7 ms and the peak of the rotation
curve is still increasing and propagating inward toward the
core. Since diffusion term is growing as the global parallel
flow is being generated, the speed of increment of the peak
velocity becomes smaller at the end of simulation. This state
of continuing inward flow profile development explains the
hollowing of the rotation profile evident in figure 3. Figure 3(b)
shows evolution of radial electric field when the flow is
building up.

In figure 4, a similar result is obtained using the GYSELA

code, for a simulation at ρ∗ = 1/512. The same simplified
magnetic geometry was used, while the temperature and
density profiles were initialized with constant R/LT and R/Ln

throughout most of the simulation domain 0.35 < r/a < 0.65,
with R/LT = 11.5 and R/Ln = 2 at r/a = 0.5. The
simulation started from nearly zero initial flow. A peak Mach
number of MT 	 0.035 in the co-current direction is found
and is still developing.

The existence of an intrinsic torque density due to
turbulent residual stress is established using simulations
in toroidal geometry, with a no-slip boundary condition.
The black solid line of figure 3 shows the outcome of
the numerical experiment which corresponds to Solomon’s
physical experiment using external torque to off-set or cancel
intrinsic torque. The whole simulation with external torque
consists of a series of short simulations. At the end of each
short simulation, the magnitude of the torque input and its
radial profile were slightly adjusted to avoid excessive or
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Figure 5. (a) Time variation of total external torque in XGC1p.
(b) Time-averaged intrinsic torque (solid line) and external torque
profile (dotted line). The sign is inverted for clear comparison.
(c) Time averaged Reynolds stress. Since parallel flow is near zero
globally, this is primarily residual stress.

insufficient momentum input. About 1 Nm of counter direction
torque is applied during the simulation, and the external torque
input tracks the self-generated torque from the Reynolds stress
(figures 5(a) and (b)). A local value of the toroidal Mach
number MT <	 0.01 is maintained during the simulation.
Note that global cancellation of the rotation was achieved.
These results constitute a clear demonstration-of-principle
of the concept of a local, intrinsic torque density and its
relation to intrinsic rotation. Hence, the Reynolds stress (see
figure 5(c)) can be interpreted as consisting of a residual stress
as well as a turbulent viscous flux. Both contributions are flux
driven.

It is this residual stress which drives the co-current
intrinsic torque. Indeed, it is possible to estimate both the
injection rate of the parallel velocity from figures 1 and 3,
and the divergence of the (r, φ) component of the residual
stress tensor from figure 5(c). On the one hand, one finds at
ρ = 0.6 an increase in v‖ of the order of 	v‖/vth ≈ 0.0442,
with vth ≈ 2.8×105 m s−1, in 	t = 7.2×10−3 s. This leads to
	v‖/	t ≈ 17 × 105 m s−2 (figures 1–3). On the other hand,
the corresponding divergence of the residual stress is of the
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temperature gradient scale length R/LT (LT ≡ T/∇T ) in XGC1p.
The x-axis is R0/LT , where R0 is major radius of magnetic axis.
The dashed line is from linear regression.

order of ∇r�rφ ≈ 	�rφ/	r ≈ −3.8 × 105/(0.34 × a) ≈
−18.6 × 105 m s−2 (figure 5(c)). It appears that 	v‖/	t +
	�rφ/	r ∼ 0. This rough numerical estimate confirms that,
in this case, the residual stress is the main contributor to the
time evolution of the parallel velocity.

A key question concerns the scaling of the intrinsic torque
with temperature gradients or R/LT − R/LTcrit , equivalently.
Obviously, since heat flux drives the turbulence and the
turbulence drives the intrinsic torque, the latter (intrinsic
torque) should increase with ∇T/T . However, the form (i.e.
exponent) of the R/LT dependence is of interest in the context
of comparison with both experimental results and theoretical
predictions. Figure 6 shows the scaling of intrinsic torque with
respect to temperature gradient scale length (LT ). Various sets
of heating/cooling powers are applied and temperature profiles
adjust self-consistently. The intrinsic torque and effective
LT are obtained by averaging these values over the mid-
minor radius region 0.4 < r/a < 0.6. The dashed line is
obtained from a linear regression. The scaling result shows
an approximate linear proportionality of intrinsic torque to
R/LT . This relation is consistent with recent experimental
findings and with theoretical predictions. Experimental results
in ITB [5] and H-mode and I-mode [21] all suggest a rough
proportionality of intrinsic rotation, and thus (indirectly)
intrinsic torque, to R/LT . These results are consistent with
those of the simulation, though the reader should take care to
note that the plasma confinement regime studied here is neither
an ITB nor an ETB. Theoretical calculations [7] also suggest
intrinsic torque, τintr ∝ R/LT though again these apply to
regimes with a dominant symmetry breaking by E × B shear
(i.e. as for a transport barrier), which does not occur in the
cases studied here. Nevertheless, these results, which are the
first of their kind for stationary flux-driven ITG turbulence with
no-slip boundary conditions on v||, do suggest a nearly direct
proportionality of τintr with R/LT , and so are consistent with
the fundamental underpinnings of the paradigm of intrinsic
rotation as heat engine.

In the simulations, the turbulence arises where most
unstable: near the outside boundary in XGC1p and in the
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Figure 7. Probability distribution function of outward heat flux
(solid), the negative of the momentum flux (dotted), and turbulenc
intensity (dashed) at r/a = 0.76 in XGC1p simulation with
R/LT 	 6. The x-axis is normalized in the standard deviation. The
two distribution functions are similar, including mean value. Note
that, for cancellation simulations, the non-zero mean momentum
flux, which gives co-current rotation, is cancelled by external torque
so as to keep the plasma stationary.

central region in GYSELA. The turbulence propagates inward
in XGC1p and both inwards and outwards in GYSELA as
intensity pulses and these pulses drives an outward heat flux
and inward momentum flux in XGC1p (outward heat flux
and both inward and outward momentum flux in GYSELA).
The inward momentum flux is responsible for the build up of
intrinsic rotation. Figure 7 shows the probability distribution
(PDF) in XGC1p of outward heat flux Q = 〈ṽr T̃ 〉 , the
negative of the momentum flux 〈ṽr ṽφ〉, and the turbulence
intensity e2�2/T 2 at r/a = 0.76. The overlay, of course,
indicates that the momentum flux is inward. To compare
the PDFs, the x-axis is normalized by the standard deviation
of each PDF. The three PDFs of XGC1p are very similar to
one another, including the normalized mean value. The same
similarity is observed at the radial position where significant
intrinsic torque exists. This tells us that avalanches, which
transport heat outwards, can drive parallel momentum inwards
with increased turbulence, and is further evidence for non-
diffusive, temperature gradient driven nature of the momentum
flux due to residual stress. In the regions where the intrinsic
torque is small and the turbulence is reduced due to strong
E × B shear, the PDF of negative momentum flux (inward
propagation of momentum) deviates from the PDF of positive
heat flux (outward propagation of heat). In the regions, the
mean momentum flux is reduced, as compared with the regions
with strong heat avalanches.

Figure 8 shows the PDFs for heat transport, momentum
transport, and turbulence intensity obtained from the GYSELA

simulation presented above. For each flux, because the time
average varies slightly at different radial positions, the PDF is
actually for � − 〈�〉 where 〈�〉 is the time-averaged flux at
a given radial position. The PDFs obtained from the GYSELA

simulation are notably different from the XGC1p results in
figure 7, in particular the overlaying of the PDFs of heat and
momentum transport is not recovered. One possible reason
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Figure 8. Probability distribution function of heat flux (solid),
momentum flux (dotted), and turbulence intensity (dashed) around
mid-radius r/a = 0.5 in GYSELA simulation with finite rotation. A
Gaussian fit is also plotted for comparison.

may reside in the different profiles used by the simulation.
In the XGC1p simulation, a steep temperature gradient is
maintained near the outer boundary, thus turbulence is most
active in the outer region of the plasma and the momentum
flux is always inward, generated at the edge and flowing in the
direction of the core. On the other hand, the profiles used in
the GYSELA simulation lead to an active turbulence throughout
the simulation domain. Thus, in terms of momentum flux,
both inward and outward propagation are observed, while
the flux-averaged heat flux is always outward. Despite these
differences, the transport of both heat and momentum are
found to exhibit large-scale events, as evidenced by the large
tails in the PDFs in figure 8. This can be quantified by
computing the excess kurtosis of the distributions, defined as
Ku(f ) = 〈(f − f̄ )4〉/〈(f − f̄ )2〉2 − 3 where f̄ is the mean
of f , which is vanishing for Gaussian statistics and positive
for flat distributions, indicating heavy tails. Excess kurtoses of
approximately 1.67 and 0.52 are obtained for respectively the
heat and momentum flux PDFs, confirming the intermittent
nature of the observed turbulent transport. The PDF of the
turbulence intensity is rather similar to the PDF of the heat
flux.

Finally, we comment here that in these simulations, while
the turbulence is stationary, the rotation profile is still evolving
and so the intrinsic rotation is still increasing while the profile
builds inwards from the edge toward the centre. As noted
above, this explains the hollowing of the rotation profile shown
in figure 3. Thus ∂t

∫
dr〈vφ(r)〉 �= 0, and the net intrinsic

torque (drive) is still in the process of overcoming the net
viscous torque. In a stationary state, we anticipate rough
equality between turbulent viscous and diffusive stresses, so
−χφ∂〈vφ〉/∂r + �intr

r,φ ≈ 0, indicative of a balance between
the co-existing tendencies of the turbulence to both accelerate
and decelerate the plasma. Thus we speculate that in a steady
heat flux driven state close to that shown here in GYSELA, the
heat flux PDF will remain similar in structure to that shown
in figures 7 and 8, while the magnitude of the centroid of the
momentum flux PDF should decrease toward zero—i.e. the
steady-state momentum flux PDF should approach symmetry
about � = 0, as hinted at in figure 8. These speculations
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Figure 9. Cartoon to show 〈k||〉 symmetry breaking caused by (a)
E × B flow shear induced fluctuation envelop shift and (b) the radial
inhomogeneity of fluctuation intensities.

will be tested in future studies, which will demand extensive
computational resources.

We speculate here that the somewhat counter-intuitive
claims that core MHD activity appears to enhance intrinsic
rotation [22] may be due to the fact that avalanches
carry simultaneously heat outwards and parallel momentum
inwards, as described above. In particular, the sawtooth crash
triggers an outward heat pulse, which in turn could result in
inward parallel momentum propagation, leading to an increase
in (intrinsic) rotation.

As part of this study, we also compared two theoretical
candidate mechanisms for the symmetry breaking required for
the residual stress, namely k-parallel symmetry breaking by
E × B shear and by intensity gradient [23–25]. These two
mechanisms are related but complementary, in that E × B

symmetry breaking creates a net 〈k||〉 by shifting the centroid
of the spectral distribution while intensity gradients create a
net 〈k||〉 by weighting various pieces of the spectral profile
differently, according to the net intensity profile gradient (see
figure 9). Note that the two are likely to occur in synergy—
a region of enhanced E × B shear will likely be banded by
small zones of large profile curvature, which are related to
intensity gradients. Furthermore, in the cases studied here,
which are not transport barriers dominated by strong shear, we
can expect both effects to contribute to symmetry breaking.
In the following analysis of residual stress correlation with
〈VE〉′ and fluctuation intensity gradients, we shall indeed see
that both are correlated (roughly comparably) with the residual
stress and intrinsic torque.

Figures 10 and 11 show the correlations from
respectively XGC1p and GYSELA between residual stress,
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Figure 10. Correlation results from XGC1p with R/LT 	 6.
(a) Correlation between the residual stress and the symmetry
breakers. (b) Correlation between intrinsic torque and the symmetry
breakers. Solid line represents E × B shear and dashed line
represents intensity gradient.

divergence of residual stress (intrinsic torque), E ×
B shear, and divergence of intensity gradient. The
correlations are obtained in Fourier space, with C(a, b) =∑

ω>0 AωB∗
ω/

√∑
ω>0 AωA∗

ω

∑
ω>0 BωB∗

ω, where Aω and Bω

are Fourier transform of a and b in time domain, (*) represents
complex conjugate. The magnitudes of correlations are shown
in the figure. For example, anti-correlation gives 1 instead
of −1. Due to the strong correlation between residual stress
and turbulence intensity, intrinsic torque and intensity gradient
(which are radial derivatives of residual stress and turbulence
intensity) show strong correlation with one another. E × B

shear also shows a strong correlation with intrinsic torque in
XGC1p:∼0.6 whilst it is smaller in GYSELA:∼0.3. On the other
hand, one finds a strong correlation of E×B shear with residual
stress in GYSELA (∼0.6) and a slightly smaller one (∼0.4) in
XGC1p. The different level correlations between XGC1p and
GYSELA possibly come from the existence of external torque
in addition to the different ρ∗, plasma profile, and boundary
condition. Interestingly, intensity gradient shows similar levels
of correlation as does E × B shear, and is even larger in
some regions. This shows the possible importance of intensity
gradient as a major k-parallel symmetry breaking mechanism.

Figure 12 shows the phase lag between those quantities
in XGC1p. Intensity gradient and E × B shear show an
approximately π/2 and −π/2 phase lag relative to residual
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Figure 11. Correlation results from GYSELA. (a) Correlation
between the residual stress and the symmetry breakers. (b)
Correlation between intrinsic torque and the symmetry breakers.
Solid line represents E × B shear and dashed line represents
intensity gradient.
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Figure 12. Phase of (a) the correlation between residual stress and
symmetry breakers; phase of (b) correlation between intrinsic torque
and symmetry breakers in XGC1p with R/LT 	 6. Solid line
represents E × B shear and dashed line represents intensity gradient.

stress, where r/a > 0.6. The phase lag between E × B

shear and intensity gradient is about π/2, too. The phase lag
between residual stress and symmetry breakers is consistent
with the picture of a drift-acoustic response of parallel velocity
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Figure 13. Space–time graphs in XGC1p (R/LT 	 8) of (a) normalized heat flux Qi, (b) turbulence intensity 〈(eφ̃/T )2〉, (c) perturbed
temperature intensity 〈(T̃ /T )2〉, (d) the residual stress 〈ṽr ṽ||〉non-diff , (e) the cross-phase between ṽr and ṽ||, (f ) the intensity of parallel flow
fluctuations 〈ṽ2

||〉 omitting m = 0 and m = 1 contributions, (g) the cross-phase between −T̃ and ṽ||. The x-axis is normalized minor radius,
and the y-axis is normalized time. T0(1 keV), χi0(1 m2 s−1), R0(1.7 m) and vth0(3.1 × 105 m s−1) are constants. T and vth are functions of
minor radius.

to pressure as the mechanism which relates the Reynolds
stress to the ultimate ∇T , ∇P drive. In particular, the
phase lag between parallel gradient of pressure and parallel
velocity is convolved with spectrally averaged k-parallel to
form the residual stress, suggesting that the stress is formed
by the acoustically driven fluctuating parallel velocity ṽ||.
The additional phase lag is thus likely a consequence of
drift-acoustic dynamics. In the event that significant mean
flow shear ∂〈v||〉/∂r has built up, we can expect ṽ|| =
−τcṽr∂〈v||〉/∂r−τc∇||P̃ /n, so ṽ|| should exhibit a phase lagged
dependence on both ṽr∂〈v||〉/∂r as well as ∇||P̃ , so correlation
with ∇||P̃ should be lower in the case of a stationary flow
profile. Further studies with stationary profiles will address
this point.

4. Space–time development of residual stress and
turbulence intensity profile

It is instructive to compare the space–time evolution of various
quantities which are relevant to the build-up dynamics of the
intrinsic velocity profile. These quantities are:

(a) the normalized fluctuation-driven heat flux Qi

(b) the turbulence intensity field 〈(eφ̃/T )2〉
(c) the perturbed temperature intensity 〈(T̃ /T )2〉
(d) the residual stress 〈ṽr ṽ||〉non-diff

(e) the cross-phase between ṽr and ṽ|| in 〈ṽr ṽ||〉, i.e. φ =
〈ṽr ṽ||〉/〈ṽ2

r 〉〈ṽ2
||〉

(f) the intensity of parallel flow fluctuations 〈ṽ2
||〉, omitting

m = 0 and m = 1 contributions (due to GAMs)
(g) cross-phase between −T̃ and ṽ||

These are shown for XGC1p in figure 13 and for GYSELA

in figure 14. In figure 14, the residual stress for non-
stationary profiles with increasing rotation is effectively the
fluctuation Reynolds stress. Time (y-coordinate) is normalized
to R0/vti and two different radially averaged values of R/LT

are investigated: R/LT ≈ 8 in XGC1p and R/LT ≈ 11.5
in GYSELA. The physics of the quantities (a)–(g) may be
summarized as follows. For both codes, the heat flux

figures 13(a) and 14(a) is the fundamental quantity, which
drives all others. Note that bursts in the heat flux appear quasi-
regularly in time at the outer boundary in XGC1p and in the
central region in GYSELA, as expected from their instability
drive. These appear as small, localized ‘flamelets’ or ‘hot
spots’ in figures 13(a) and 14(a). Intensity pulses, shown
in figures 13(b) and 14(b) as linear ‘flame tongues’, again
propagate in time inward in XGC1p and in both directions
in GYSELA. They appear to emanate from the heat flux hot
spots. In both cases, 〈(T̃ /T )2〉 and 〈ṽ2

||〉 pulses, shown in
figures 13(c) and (f ) behave similarly. Thus, it is not surprising
that structurally similar spatio-temporal pulses appear in the
contour plots of residual stress (figure 13(d)) and its associated
cross-phase (figure 13(e)). These, too, exhibit the pattern of
linear tongues, symptomatic of inward propagation, emanating
from the locations of the heat flux ‘hot spots’ on the outer
boundary. This behaviour is consistently found in both codes.
In GYSELA since toroidal flow shear is present, a significant
diffusive contribution to the Reynolds stress is expected and
the residual stress cannot be measured straightforwardly.
Assuming a negligible convective term, the residual stress can
be estimated [26] by subtracting the diffusive term from the
Reynolds stress, assuming the turbulent momentum diffusivity
to be χφ = 〈ṽ2

r 〉τc where ṽr is the fluctuating radial E × B

velocity and τc is the turbulent correlation time. This is
shown in figure 14(c). Given this rough estimate for χφ ,
an effective Prandtl number Pr = χφ/χi of order unity is
found in GYSELA in the central region where the turbulence
is strong, and decreases towards the edge. Finally, −T̃ and
ṽ||—both of which are advected quantities—appear to be
strongly correlated figure 13(g). Note that a striking feature
of figures 13(d) and (e) is that they both strongly suggest that
residual stress, and thus intrinsic torque, build inward from
the boundary region in regimes where the turbulence intensity
peaks at the edge, as observed in the XGC1p simulation. The
mechanism of this build-up is by turbulence intensity pulses
(i.e. turbulence spreading [27]) inducing inwardly propagating
pulses in the residual stress and intrinsic torque. These inward-
propagating momentum transport events then drive the flow
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Figure 14. Space–time graphs in GYSELA of (a) the normalized heat flux, (b) the turbulence intensity and (c) the residual stress. The x-axis
is normalized minor radius, and the y-axis is normalized time.

profile evolution. One question which is fundamental to this
scenario concerns how to understand the relation between
(inward) avalanches of positive heat flux—corresponding
to outward propagating heat—and avalanches of negative
momentum flux, i.e. of residual stress and of intrinsic torque—
corresponding to inward-propagating parallel momentum.
These two phenomena may be reconciled by noting that

(i) generically, intensity profiles increase with radius (apart
from ETB plasmas)

(ii) a pulse in heat flux will necessarily produce a surge in
the fluctuation level. It is natural, then, for the local
fluctuation energy excess to relax by inward spreading.
Such inward spreading will naturally appear as inward-
propagating intensity fronts which are ignited by bursts
in the heat flux. Finally, then, the intensity fronts
naturally produce residual stress fronts which drive
intrinsic rotation.

In this way, we understand a link between edge heat flux
bursts, naturally appearing where ∇T steepens at the beginning
of the cooling zone, and the development of intrinsic torque
from the outside, inward.

5. Discussions and conclusions

In this paper, we have presented the results of detailed
simulation studies of the dynamics of intrinsic torque and
rotation profile evolution in flux-driven ITG turbulence. The
principal results of this work are:

(i) Significant net unidirectional co-current toroidal rotation,
with thermal Mach number MT > 0.05, is observed
to develop from noise in flux driven turbulence with an
external no-slip boundary condition.

(ii) The intrinsic rotation profile in XGC1p builds inwards,
from the boundary, as observed in some experiments [28]
and more generally, as shown through the GYSELA results

tends to build-up from regions of strong turbulence and
then spreads both ways.

(iii) Since the simulation plasma can be held stationary (i.e.
local rotation profile flat 〈v||〉 ≈ 0 with direct counter-
current momentum, the existence of a local intrinsic torque
is demonstrated. The intrinsic torque is responsible for the
self-acceleration of the plasma from rest. The intrinsic
torque is observed to scale linearly with R/LT .

(iv) The intrinsic torque density is due to the divergence of
a residual stress (i.e. τintr = −∂r�resid), as the diffusive
component of the toroidal Reynolds stress is negligible
during the time of the simulation.

(v) The measured intrinsic torque is correlated with both the
mean E×B shear 〈VE〉′ and the mean turbulence intensity
gradient I ′, both of which are candidate symmetry
breaking mechanisms which can set the sense of the
residual stress. Interestingly, the measures of correlation
of �resid with 〈VE〉′ and I ′ are approximately equal,
suggesting that mechanisms other than the conventional
E × B shear may determine the residual stress.

(vi) The normalized probability distribution function of the
heat flux (positive, leading to outward propagation of
heat) and of the momentum flux while the intrinsic
rotation builds (negative in XGC1p leading to inward
propagation of momentum and both positive and negative
in GYSELA due to a different excitation of the turbulence)
show interesting trends: both PDFs are very similar in
XGC1p and nearly overlay one another in the regions
where a strong Reynolds stress is observed whilst they
differ in GYSELA. Interestingly in that case the heat PDF
remains strongly skewed whilst the momentum PDF
is more symmetric. This is likely due to the central
excitation of the turbulence which allows for a symmetry
between incoming and outgoing avalanches. In other
words, heat and momentum are found to be transported
by the same avalanches, but heat propagates outward (as
constrained by the second thermodynamical principle)
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while momentum can propagate both ways (note that there
is no such thermodynamical constraint on the propagation
direction of momentum). The observation with both codes
of inward-propagating avalanches is further evidence that
a ∇T driven, non-diffusive momentum flux produces the
intrinsic rotation profile.

(vii) Increased inward turbulence intensity propagation of
fronts triggered by heat avalanches enhances the phase
correlation of radial E × B flow with parallel flow
perturbations and so also drives an inward momentum
flux. We observe that the intrinsic rotation profile when
the turbulence is strong in the edge builds from the
outside in.

All told, these results strongly support the model of a
turbulence driven intrinsic torque as the origin of intrinsic
rotation.

There are aspects of the results which merit more
discussion and plans for detailed future study. There are:

(i) the synergy and proximity in XGC1p of the no-slip
boundary condition on 〈v||〉, the edge cooling layer and
the absence of any fluctuation damping layer near the
boundary are all required to realize significant self-
acceleration. In particular, the edge cooling layer, together
with strong heat flux drive, produces the requisite steep
∇T near the edge. This steep temperature gradient drives
the non-diffusive Reynolds stress (residual stress) which
produces the intrinsic torque. That, in turn, acts in concert
with the no slip boundary condition to drive the flow. The
absence of a fluctuation damping boundary layer, often
utilized in global simulations, allows direct transmission
of stresses to the wall by turbulence.

(ii) the rather obvious out → in dynamics of the flow profile
build-up when the turbulence is excited in the edge
region. This phenomena, which is similar to the build-
up of intrinsic rotation in H-mode [28], appears to result
from inward turbulence pulses originating during heat
flux bursts near the edge. Since fluctuation intensity is
peaked at the edge, the pulse-induced bursts will lead to
the inward-propagating pulses of intensity and Reynolds
stress. These, in turn, build up the flow. Note the intensity
and stress propagate inward, the sign of the stress is such as
to generate co-rotation. These results merit further study
in both gyrokinetic and simpler gyrofluid simulations.

(iii) the existence of a strong correlation between the heat flux
and momentum flux PDFs while the rotation profile is
building. Specifically, whilst PDF(Q) ≈ PDF(−�r,φ)

in XGC1p it is not so in GYSELA, suggesting that during
the profile build-up phase, avalanches of heat flux, which
is positive due to thermodynamical constraints, may
drive avalanches of positive and negative momentum
flux, leading to both outward and inward propagation
of momentum. Once 〈vφ(r)〉 builds up, we expect as
hinted at in GYSELA the PDF(Q) to remain similar, whilst
the PDF(−�r,φ) should approach symmetry between
incoming and outgoing avalanches, driven by ∇〈Ti〉 and
∇〈Vφ〉, respectively. This will be pursued in future studies
with both gyrofluid and gyrokinetic codes.

(iv) the finding that τintr ∼ R/LT supports the ‘intrinsic
rotation as heat engine’ model and suggest further, more
in depth studies of this model should be undertaken.

Finally, we should note while that the classic manifestation
of intrinsic rotation generation is in H-mode plasmas—to
which the famous Rice scaling [1] 	vφ ∼ 	W/Ip applies—
the phenomena we study here—especially through the choices
of the temperature and density profiles in XGC1p—are not
simulations of H-mode, though there are some similarities.
Thus, it is natural to ask, if not H-mode, what physical tokamak
operation regime do these simulations resemble? We believe
the answer is that the simulations resemble a sort of zero torque
RI-mode [29–31]. Specifically, the strong edge cooling is
similar to a radiative cooling mantle, and tends to steepen
∇T , which then drives the rotation. Of course, were non-
adiabatic electrons included, a strong ITG turbulence driven
inward particle pinch would steepen ∇n and feedback to
reduce the ITG, while possibly triggering TEM and other ∇n-
driven instabilities. The physics to represent these phenomena
are not in the model. However, our results suggest that
steepening of ∇Ti by radiative mantle cooling in RI-mode may
drive significant intrinsic rotation, along with density profile
steepening and confinement enhancement. Further work on
this prediction appears interesting and will be pursued in the
future. We hope that possible experiments will be considered,
as well. We note that studies of intrinsic rotation in RI-mode,
p-ITB [32] and IOC [33] regimes have not been performed and
would be of significant potential interest.
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